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Figure 1. The image presents a trio of scenes that demonstrate the exceptional transformation capabilities of our framework. Initially, we
address the challenge of temporal consistency in video generation by incorporating reference videos as input, which guides the temporal
transformation process to produce coherent results. On the left, the raw input images from the original video are shown, slightly compromised
by watermarks. Despite this, the framework skillfully interprets detailed textual prompts into high-resolution, watermark-free videos (768
× 448), as seen in the generated output. These prompts, which are meticulously detailed in Table 5, not only direct the removal of visual
imperfections but also enhance the original content, weaving a dynamic and engaging visual narrative that underscores our framework’s
advanced capabilities in personalized video generation.
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Abstract

Personalized video generation is a key driver of inno-
vation in multimedia content creation. Diffusion processes
have become increasingly important in this field, as they
show great potential in generation settings. Our research
leverages the emerging potential of diffusion processes in
video synthesis to present a novel framework that fuses a
large language generative model (LLM) with a text-to-video
(T2V) diffusion synthesis system. The aim of this system is
to produce bespoke video content from user-given text. To
achieve this, we tap into the capabilities of advanced LLMs
to expand brief story prompts into detailed scripts that are
then harmonized with the T2V diffusion models. Our syn-
thesis approach addresses and mitigates challenges such
as frame inconsistency, high computational overheads, and
the scarcity of high-quality datasets. The key components of
our framework are a complex temporal attention mechanism
and a robust multi-tiered pipeline, which includes key frame
generation, interpolation, LDM decoding, and upsampling.
These components enable us to produce seamless, richly con-
textual, and computationally efficient videos. To enhance the
temporal consistency in video generation, we augment the
text-to-video (T2V) process by integrating reference videos
as guidelines. This approach facilitates the transformation of
still images into fluid sequences with movement awareness,
yielding more coherent and temporally consistent results.
We evaluate our system using metrics such as Fréchet in-
ception distance (FID) and Fréchet video distance (FVD),
and demonstrate its capability to outperform current leading
methods in crafting personalized videos. We also show how
we can turn the LLM-generated prompts into an efficient
and expressive text-to-video model with resolution up to 768
× 448 using LDM stable diffusion. The preliminary results
indicate not only improved performance but also a novel
pathway for users to create videos that vividly embody their
personal stories and artistic visions.

Keywords: Large Language Generative Model (LLM), Text-
to-Video (T2V), Latent Diffusion Model (LDM), Temporal
Attention Mechanism(TAM)

1. Introduction

The field of computer vision is undergoing rapid advance-
ments, with text-to-image generation [43, 44] emerging as
a focal area of research. Existing methodologies [44] pre-
dominantly concentrate on generating static images based on
textual prompts. While these approaches have demonstrated
utility, they fall short of addressing the growing demands of
video content creation. To bridge this gap, the present study
embarks on an innovative endeavour. Our primary objective
is to fine-tune a video diffusion model capable of generat-

ing a sequence of coherent frames. Furthermore, we aim to
augment this model by integrating a large language model,
which will transform textual inputs into both captions and
simplified prompts. These elements will be synergistically
combined within the video diffusion framework. Ultimately,
the study aims to deliver a comprehensive solution for video
generation, featuring seamless integration of text and visual
frames.

A particularly salient field within this landscape is text-
to-image generation. While a multitude of existing method-
ologies have made commendable strides in transforming
textual descriptions into static images, they conspicuously
fall short when it comes to the generation of dynamic video
content [28]. The prevailing research paradigm has been
largely skewed towards the creation of static images, thereby
leaving a discernible void in the arena of producing seamless
video narratives based on user prompts.

At the heart of this intricate challenge lies a dual conun-
drum. First, there’s the task of generating cogent and com-
pelling textual narratives. For this, we commence by utilizing
an initial user-provided story title as a foundational prompt.
Leveraging the prowess of state-of-the-art language mod-
els such as GPT-3.5 [48], GPT-4 [47], and Vicuna [83] and
LLAMA [59,61], we aspire to achieve near-human language
generation capabilities. The empirical data underscores the
adeptness of these models in weaving intricate narratives,
and we harness this potential to flesh out the initial prompt
into a comprehensive textual storyline.

The subsequent hurdle, and arguably the more intricate
of the two, is translating these meticulously crafted textual
narratives into dynamic visual content. The chasm between
human cognition and the underlying algorithms of text-to-
video diffusion models is pronounced. This disparity neces-
sitates a nuanced approach, leading us to devise a tailored
transformation technique. This method seamlessly morphs
the textual narrative into a structured format that’s primed
for the diffusion models, encapsulating textual cues, chro-
matic patterns, geometric shapes, and other pivotal video
generation parameters.

In essence, the overarching challenge is the seamless
fusion of cutting-edge linguistic models with avant-garde
video synthesis techniques, a confluence that promises to
revolutionize the domain of dynamic content creation.

To actualize the envisioned seamless video synthesis, we
architect a robust multi-stage pipeline. At its heart lies the
Latent Diffusion Model (LDM) [51], a beacon of consis-
tency and quality in frame rendering. Augmented with tem-
poral attention mechanisms, the LDM ensures that the video
frames progress with a rhythmic cadence, preserving both
continuity and fluidity. The culmination of this pipeline is a
harmonious blend of linguistic prowess and visual synthesis,
promising personalized video content tailored to individual
narratives. In the sections that follow, we unfurl the detailed
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tapestry of our methodology, buttressed with empirical vali-
dations and benchmark comparisons. We are optimistic that
our approach, a nexus of linguistic and visual AI capabil-
ities, ushers in a significant stride forward in the realm of
personalized video generation.

Our framework, informed by a symphony of pioneer-
ing research and novel methodologies, establishes itself as
an innovative paradigm in the domain of video generation.
Drawing inspiration from seminal works [6]. we have inte-
grated the Latent Diffusion Model (LDM) at the heart of our
architecture. This integration is pivotal in upholding the flu-
idity and continuity that are paramount in frame sequences.
When synergized with temporal layers, the LDM stands as
a beacon of consistency, ensuring that the resulting videos
exhibit smooth and seamless transitions between frames. To
enhance the temporal consistency in video generation, we
augment the text-to-video (T2V) process by integrating refer-
ence videos as guidelines. This approach facilitates the trans-
formation of still images into fluid sequences with movement
awareness, yielding more coherent and temporally consistent
results.

Central to our framework is the harmonious interplay be-
tween the LLM and T2V components. The LLM, acting as
the genesis, meticulously crafts textual narratives that form
the bedrock for subsequent visual interpretations. In contrast,
the T2V system undertakes the task of morphing these narra-
tives from mere textual descriptions into captivating visual
tales. While each component has its own distinct realm of
operation, they converge in a collaborative dance, ultimately
producing a cohesive video output. This video not only res-
onates with visual allure but also faithfully mirrors the user’s
initial textual prompt, exemplifying the framework’s adept-
ness in bridging the textual and visual realms.

Our contributions in this research are multifaceted. Our
research advances the field through a novel framework that
synergistically integrates advanced language models with
state-of-the-art video synthesis techniques, producing per-
sonalized video content with high precision. Addressing the
temporal consistency issues prevalent in diffusion architec-
ture, we introduce a suite of technologies that refine video
continuity. We have identified a gap in current research re-
garding long video generation and its deficiency in training
data that captures the essence of extended durations. To
bridge this gap, we propose utilizing reference videos from
extensive video-text paired datasets to inform and enhance
subframe generation. Moreover, we harness advanced large
language models for central reasoning, establishing a com-
prehensive dataflow from tile to storyline, then to video cap-
tion, and finally to video generation prompt—fortifying the
content’s coherence. The forthcoming sections will elaborate
on our methodology, validate it empirically, and showcase
its efficacy across standard benchmark datasets.
Our principal contributions are articulated as follows:

• We unveil a cutting-edge framework that orchestrates
the capabilities of large-scale generative language mod-
els with text-to-video diffusion synthesis systems, en-
abling the creation of tailor-made video content from
textual prompts provided by users.

• Our framework’s effectiveness and adaptability are
proven across a wide range of domains and scenarios,
showcasing its broad applicability.

• Through rigorous experimentation and evaluation, we
substantiate the superior quality and variety of the video
content produced by our system. Additionally, we pro-
vide evidence of heightened user satisfaction and pref-
erence for our approach.

2. Related Work
We start by reviewing the achievements of LLMs, which

are pre-trained on massive text corpora and improved by
reinforcement learning techniques. We show how LLMs
can perform various natural language tasks, such as com-
prehension, generation, interaction, and reasoning, as well
as in-context and instruction-based learning, and chain-of-
thought prompting. We then move on to the domain of DMs,
which are generative models that learn to synthesize realistic
data by adding and removing noise iteratively. We highlight
the recent developments in latent DMs, which compress the
data into a lower-dimensional latent space and enable high-
fidelity and efficient video synthesis from user descriptions.
We also discuss the challenges and solutions in text-to-image
generation, emphasizing the transition from GANs to models
that use latent spaces for more expressive and controllable
outputs. Finally, we examine the dynamic field of video dif-
fusion, where we present the latest techniques that advance
the text-to-video synthesis.
Large Language Model Large Language Models (LLMs)
have gained significant attention in both academic and in-
dustrial sectors due to their exceptional performance across
a wide array of Natural Language Processing (NLP) tasks
[8, 11, 49, 60, 78, 80]. The architecture of these LLMs is fun-
damentally built upon extensive pre-training on massive text
corpora, which is further enhanced by the integration of Re-
inforcement Learning from Human Feedback (RLHF) [49].
This synergistic approach equips LLMs with unparalleled
capabilities in language comprehension, generation, inter-
action, and reasoning. The advent of LLMs has spurred
the emergence of new research avenues that aim to exploit
the inherent potential of these models. These burgeoning
domains include, but are not limited to, in-context learn-
ing [8,41,73], instruction-based learning [12,34,68,69], and
chain-of-thought prompting [20,37,66,71]. LLMs have been
observed to adhere to scaling laws [31,35], which contribute
to their robust reasoning capabilities. These properties en-
able LLMs to understand natural language intricacies and
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solve complex tasks with remarkable efficacy. Owing to their
proven success across diverse applications [82], LLMs have
experienced exponential growth in recent years. Their ap-
plications have also expanded beyond mere text generation
to include interactive NLP tasks, such as embodied AI and
story generation.
Diffusion Models Diffusion models (DMs) are a class of
generative models that learn to synthesize realistic data
by adding and removing noise iteratively. They have been
widely used for video synthesis tasks, such as text-to-video
generation, video inpainting, and video super-resolution.
DMs are trained using denoising score matching, which
minimizes the difference between the output of a denoising
model and either the random noise or a specific target vector.
The noise level is controlled by a schedule that depends on
the diffusion time and the signal-to-noise ratio. The diffusion
process can be modeled by stochastic differential equations,
which are usually discretized for practical implementation.

DMs suffer from some drawbacks, such as high computa-
tional cost due to the large number of diffusion steps and low
resolution due to the pixel-space representation. Moreover,
DMs often require additional conditioning information, such
as text prompts, to generate diverse and coherent videos. La-
tent diffusion models (LDMs) [51] are a novel extension of
DMs that address these issues by compressing the input data
into a lower-dimensional latent space using a regularized
autoencoder. The latent space allows for smaller and less
memory-intensive DMs that can generate high-fidelity recon-
structions using fewer diffusion steps. Furthermore, LDMs
can incorporate an adversarial objective to enhance the pho-
torealism of the generated videos. In this paper, we propose
a new LDM framework for personalized video synthesis
based on user descriptions. We leverage state-of-the-art large
language models to expand brief story prompts into detailed
scripts that are then harmonized with the LDMs. We also
introduce a temporal attention mechanism and a multi-stage
pipeline to ensure smooth and contextually-rich video con-
tent. We evaluate our framework using various metrics and
demonstrate its superiority over existing methods in terms
of quality, diversity, and efficiency.
Image Diffusion Text-to-image (T2I) generation is a chal-
lenging task that aims to synthesize realistic images from
natural language descriptions. In recent years, various meth-
ods have been proposed to tackle this problem, ranging from
generative adversarial networks (GANs) to diffusion models.
In this section, we review some of the most relevant works
in this field and highlight their strengths and limitations.

GANs are a popular choice for T2I generation, as they
can learn to generate sharp and diverse images by optimiz-
ing an adversarial objective. However, GANs also suffer
from some issues, such as mode collapse, instability, and
difficulty in capturing long-term dependencies. Early works,
such as Reed et al., directly adapted GANs for T2I tasks

by conditioning the generator and the discriminator on text
embeddings. Later works, such as StackGAN++ [79] and At-
tnGAN [74], improved upon this by introducing progressive
generation techniques and enhanced text-image alignment
mechanisms.

A major breakthrough in T2I was achieved with DALL-
E [50], which treated the generation process as a sequence-
to-sequence problem, utilizing a discrete variational auto-
encoder (VQVAE) paired with a Transformer. This approach
enabled the generation of high-quality and diverse images
from complex and compositional text prompts, such as “an
armchair in the shape of an avocado”. Following this, var-
ious models, such as Make-A-Scene and Parti, introduced
controllability into T2I generation via semantic maps and
image tokenizers, respectively.

Another promising direction for T2I is to use denois-
ing diffusion probabilistic models (DDPMs), which learn
to synthesize realistic data by adding and removing noise
iteratively. DDPMs have some advantages over GANs,
such as stability, scalability, and flexibility. For example,
GLIDE [44] utilized a T2I and an upsampling diffusion
model for cascaded generation, introducing classifier-free
guidance to enhance image quality and adherence to the text
prompt. DALL-E combined the capabilities of CLIP’s latent
space with a prior model to inform the generation process.
Lastly, recent advancements, such as VQ-diffusion and sta-
ble diffusion, have shifted T2I generation from pixel space
to the more efficient latent space.
Video Diffusion Although text-to-image (T2I) technologies
have made considerable progress, their text-to-video (T2V)
counterparts still grapple with data scarcity, temporal con-
sistency, and computational resource intensity challenges.
Video Diffusion Model [28] was among the first to gener-
ate low-resolution videos through Diffusion Models (DMs)
and a space-time factorized U-Net architecture. To generate
high-definition videos, ImagenVideo [26] advanced the field
with cascaded diffusion models and a unique v-prediction
parameterization technique. Subsequent research aimed to
lessen training costs by transferring knowledge from pre-
trained T2I models to T2V generation. For example, Make-
A-Video [56] , MagicVideo [84] , and LVDM [23] employed
fine-tuning techniques, while Khachatryan et al. [36] at-
tempted a training-free transfer. However, this method pro-
duced low-quality videos with inconsistent dynamics. Other
efforts, like Gen-1 [16] and FollowYourPose [40] , focus on
controlling video structure and motion dynamics using depth
and pose cues, respectively. Several other studies also share
our motivation to extend image Latent Diffusion Models
(LDMs) to video generators. Most notably, Video-LDM [6]
introduces temporal layers but retains the original weights.
Our work extends these efforts by adapting a pre-trained T2I
model for more efficient text-structure-guided video gener-
ation, focusing on improving video prediction mechanisms
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for longer video synthesis.
In the broader area of video generation, several archi-

tectures have been employed, including Recurrent Neural
Networks [1, 9, 14, 19, 38] , Autoregressive Transform-
ers [32, 72, 75], Normalizing Flows [5, 15], and Gener-
ative Adversarial Networks (GANs) [39, 57, 63, 65, 77].
LongVideoGAN [7] generates high-resolution videos over
extended durations by employing dual-resolution models.
The concept of incorporating temporal layers into pre-trained
models has previously been explored by MoCoGAN-HD
[57] and StyleVideoGAN [18], although these were limited
to object-centric videos. Unlike CogVideo [32], which relies
on a strictly autoregressive architecture, our approach uses
continuous Diffusion Models and offers better performance
in text-to-video synthesis. More recently, Diffusion Models
(DMs) have emerged as a promising technique for video
synthesis. Ho et al. [29], Yang et al. [76], and Voleti et al.
[64] variously used DMs for low-resolution video generation,
prediction, and interpolation.

Text-to-video (T2V) generation is a challenging task that
aims to synthesize realistic videos from natural language
descriptions. Compared to text-to-image (T2I) generation,
T2V generation has received less attention, mainly due to
the lack of large-scale, high-quality text-video datasets and
the high complexity of video data. In this section, we review
some of the most relevant works in this field and highlight
their strengths and limitations.

Early works on T2V generation focused on simple do-
mains, such as animations of digits or constrained human
actions. For example, Sync-DRAW [42] employed a vari-
ational autoencoder (VAE) with recurrent attention mecha-
nisms to generate videos conditioned on text. Later works
adapted generative adversarial networks (GANs) from image
to video generation, such as TGAN and TAC-GAN, which
used temporal convolutional networks and attention mecha-
nisms, respectively.

Recent works on T2V generation have achieved signif-
icant improvements by using more advanced models and
techniques. For instance, GODIVA introduced the use of a
2D VQVAE and sparse attention, enabling the generation of
more realistic scenes from complex text prompts. NÜWA
created a unified framework that can perform various gener-
ative tasks, including T2V, within a multitask learning setup.
CogVideo augmented a pre-existing T2I model (CogView)
with temporal attention modules to capture the dynamic na-
ture of video. Video Diffusion Models (VDM) employed a
space-time factorized U-Net that was trained on both image
and video data.

However, most of the existing works on T2V generation
rely on large private datasets with millions of text-video
pairs, which limit their reproducibility and accessibility. In
contrast, our work utilizes exclusively open-source datasets,
such as YouCook2 and MSR-VTT, which are widely used

and publicly available. Moreover, our work leverages state-
of-the-art large language models and latent diffusion models
to generate personalized videos based on user descriptions,
which is a novel and challenging task that has not been
explored before.

3. Method
Our research framework introduces a sophisticated system
architecture that seamlessly integrates a Large Language
Generative Model (LLM) with a Text-to-Video (T2V)
Diffusion Synthesis System. The overarching aim of
this integrated system is to generate personalized video
content predicated on concise user-provided descriptions.
Within this architecture, the LLM is specifically tasked
with generating the textual components that serve as the
narrative backbone of the video. Concurrently, the T2V
system is responsible for rendering the video components,
thereby translating the textual narrative into a visual medium.

Textual Generation. Our research introduces a sophisticated
pipeline designed for the generation of personalized videos
shown in Fig. 3 , a process that commences with an initial
story title prompt, hereafter denoted as SI . The function of
SI is twofold: it serves as a query parameter for scenario gen-
eration and establishes a foundational framework that guides
the ensuing stages of video creation. For the critical tasks
of natural language understanding and generation, we lever-
age state-of-the-art large language models, symbolized as
G. Our implementation options include GPT-3.5 [48], GPT-
4 [47], and open-source alternatives such as Vicuna [83] and
LLAMA [59, 61]. As evidenced by the comparative analysis
presented in Table 4, contemporary large language models
exhibit capabilities in language generation [10] , knowledge
utilization [3, 22] , and advanced reasoning across multi-
ple domains [13, 24, 70] . These attributes underscore their
potential utility in generating storylines that approximate
human-level performance. To synthesize a nuanced and con-
textually rich storyline, we invoke G to produce detailed
story descriptions predicated on SI . This operation can be
mathematically formalized as:

SD = G(SI). (1)

In this equation, SD signifies the detailed story descriptions
that are algorithmically generated by G based on the initial
title prompt SI . It is imperative to recognize that the cog-
nitive mechanisms humans employ to understand context
can diverge substantially from the interpretative algorithms
of text-to-video (T2V) diffusion models. To reconcile this
discrepancy, we introduce a specialized processing phase.
This phase is engineered to transform the human-readable
story descriptions, SD, into a format that is more conducive
for T2V diffusion models. The transformation encompasses
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Figure 2. Personalized Video Generation Pipeline is partitioned into two primary subsystems. (a) delineates an intricate architecture
that cohesively amalgamates a Large Language Generative Model (LLM) with a Text-to-Video (T2V) Diffusion Synthesis System. The
overarching objective of this synergistic framework is to fabricate personalized video content, which is contingent upon succinct, user-supplied
textual descriptions. Additionally, we retrieval the reference videos by the keywords, which serve as guides the temporal transformation for
T2V system. Within this integrated architecture, the LLM is explicitly commissioned to synthesize the textual elements that constitute the
narrative scaffolding of the resultant video. In parallel, the T2V system undertakes the task of rendering the visual constituents, thereby
transmuting the textual narrative into a corresponding visual representation. (b) elucidates the architecture of our video diffusion system,
which is an assemblage of five modular components: a keyframe Local Dynamic Model (LDM) block, an interpolation block, a VQ-VAE
decoder block, and an upsampler block, all of which are augmented with temporally-attentive mechanisms.

the conversion of textual narratives into a structured format
that may incorporate a range of attributes, including textual
elements, color schemes, shapes, and categorical descriptors.
We designate this refined, model-compatible description as
SP . The formal representation of this transformation is:

SP = G(SI , SD). (2)

Here, SP represents the processed story description,
optimized for compatibility with T2V diffusion models. It is
generated by G using both the initial title prompt SI and the
detailed story descriptions SD. By adopting this bifurcated
approach, our methodology ensures the generation of videos
that are not only contextually rich but also highly compatible
with the computational paradigms of T2V diffusion models,
thereby elevating the overall quality of the generated video
content.

Tab 5 demonstrates Large Language Models’ prowess
in translating detailed narrative prompts into visually and
emotionally captivating video scenes. These prompts, rich in

metaphor and imagery, are meticulously rendered into videos
where the spatial layers construct lifelike images and tempo-
ral layers enable smooth transitions, mirroring the intended
narrative. Captivating depictions include the Great Wall as
a symbol of resilience, the Li River’s tranquil beauty, and
the Potala Palace’s sacredness, each reflecting the scene’s
unique essence and atmosphere as envisioned in the prompts.

Reference Guide Video Retrieval. To enhance the cohe-
sion and alignment between the generated content and the
retrieval system’s requirements, we refine the process of
keyword generation. Our approach leverages the prompts
used in the diffusion model as a basis to synthesize a set
of keywords SK . These keywords are engineered to closely
correspond with the expectations of the text encoder within
the text-video retrieval system, ensuring that the resulting
keywords serve as effective reference points for subsequent
video processing steps. The generation model G operates
on the set of diffusion prompts SP , applying a transforma-
tion that yields a set of keywords optimally suited for our
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Text Generation For StoryLine (𝑺𝑫)

System Instruction : I would like you to play the role of a storyteller and create 
captivating stories that are entertaining, engaging, and imaginative for the audience. 
You have the freedom to choose the genre of the stories, whether they are fairy tales, 
educational narratives, or any other type that has the potential to capture people's 
attention and spark their imagination. Depending on the intended audience, you can 
select specific themes or topics for your storytelling session. For example, if the 
audience is children, you can focus on animal stories, whereas for adults, historical 
tales might be more engaging. Remember, the stories should be written in English. 
My first request is :

User Instruction : Eight Great Wonders of the China and World (4 each) (𝑺𝑰)
System Response :
1. The Great Wall of China, a serpent carved from the stone of human spirit and 
perseverance, weaved its tale across majestic mountains and profound valleys, 
epitomizing the zenith of human ingenuity and determination.
2. The Forbidden City, a grandeur unfolded in the heart of Beijing, wore robes of 
vibrant hues and intricate carvings, narrating sagas of ancient prowess, emperors' 
whispers, and the clandestine corners of China’s majestic past.
3. The Li River, a silken ribbon through Guilin’s embrace, mirrored the awe of 
limestone guardians in its serene waters, painting scenes celestial, ethereal in their 
grace and resplendence.
4. The Potala Palace stood as the spiritual sentinel of Lhasa, its walls kissed by the 
wisdom of Tibetan sanctity, cradling within its embrace the holy whispers of prayers 
and sacred relics bathed in golden reverence.
5. The Enchanted Gardens of Zephyr harbored a divine enchantment, where dreams 
woven into the fabric of reality danced amidst blossoms vibrant as dawn and trees as 
ancient as time itself.
6. The Crystal Caverns of Lumina cradled crystals that shimmered with the essence 
of healing, showering hope’s light upon the souls courageous enough to embrace 
their mystique.
7. The Floating Isles of Aetheria unfurled realms divine, where lands of ethereal 
beauty welcomed the hearts adorned with the purity of the heavens, showcasing 
cascades and landscapes kissed by the divine.
8. The Whispering Waterfalls of Serenity echoed a ballet of soothing harmonies 
across serene valleys, their waters narrating the whispers of age-old tales 
enshrouded in mystery and allure.

Text Generation For Diffusion Prompt (𝑺𝑷)

System Instruction : You should generate image based on the description. refine 
the texts below and serve as prompt for image generation model, using detailed 
description in key short terms, output list of 8 prompts only, My first request is :

Chain Instruction : Eight Great Wonders of the China and World (4 each) (𝑺𝑰)
1. The Great Wall of China, a serpent carved from the stone of human spirit and 
perseverance, weaved its tale across majestic mountains and profound valleys, 
epitomizing the zenith of human ingenuity and determination.
….
8. The Whispering Waterfalls of Serenity echoed a ballet of soothing harmonies 
across serene valleys, their waters narrating the whispers of age-old tales 
enshrouded in mystery and allure. (𝑺𝑫)
System Response :
1. The Great Wall of China unfurled as a monumental testament of endurance, its 
sinuous embrace winding through realms of earthly grandeur, embodying the spirit 
of human tenacity and the brilliance of architectural sagas.
2. The Forbidden City, a regal canvas painted with the strokes of imperial majesty in 
the heart of Beijing, wore the richness of vibrant tales woven into colors and 
carvings that spoke of ancient power and dynastic echoes.
3. The Li River flowed as a mesmerizing ode to nature’s beauty, where limestone 
sentinels towered over waters bathed in tranquility, and reflections told stories 
painted with the brushes of ethereal wonder.
4. The Potala Palace, an illuminated beacon in the spiritual skies of Lhasa, Tibet, 
stood adorned with walls of sanctified white and golden crowns, a hallowed abode 
guarding the treasures of Tibetan Buddhism’s sacred heart.
5. In the embrace of the Enchanted Gardens of Zephyr, dreams blossomed with life, 
cradled amidst petals of vibrant allure and the timeless arms of ancient arboreal 
guardians.
6. Within the heart of the Crystal Caverns of Lumina, healing crystals shimmered, 
carrying the essence of hope's sparkle and the gentle embrace of luminescent solace.
7. The Floating Isles of Aetheria unfolded their majestic tapestry to hearts pure as 
the realms they embraced, unveiling canvases painted with the artistry of unique 
landscapes and the poetry of cascading waterfalls.
8. The Whispering Waterfalls of Serenity serenaded the valleys with soothing 
symphonies, where waters carried the whispers of tales woven in the fabric of 
ancient mystique.

Text Generation For Keywords (𝑺𝑲)

System Instruction : Please process the text provided below with a focus on high-
level content analysis. Utilize natural language processing techniques to identify and 
extract salient terms that serve as pivotal points of the narrative or discussion. My 
first request is :

Chain Instruction : Eight Great Wonders of the China and World (4 each) (𝑺𝑰)
1. The Great Wall of China unfurled as a monumental testament of endurance, its 
sinuous embrace winding through realms of earthly grandeur, embodying the spirit 
of human tenacity and the brilliance of architectural sagas.
2. The Forbidden City, a regal canvas painted with the strokes of imperial majesty in 
the heart of Beijing, wore the richness of vibrant tales woven into colors and 
carvings that spoke of ancient power and dynastic echoes.
3. The Li River flowed as a mesmerizing ode to nature’s beauty, where limestone 
sentinels towered over waters bathed in tranquility, and reflections told stories 
painted with the brushes of ethereal wonder.
….
6. Within the heart of the Crystal Caverns of Lumina, healing crystals shimmered, 
carrying the essence of hope‘s sparkle and the gentle embrace of luminescent solace.
7. The Floating Isles of Aetheria unfolded their majestic tapestry to hearts pure as 
the realms they embraced, unveiling canvases painted with the artistry of unique 
landscapes and the poetry of cascading waterfalls.
8. The Whispering Waterfalls of Serenity serenaded the valleys with soothing 
symphonies, where waters carried the whispers of tales woven in the fabric of 

ancient mystique. (𝑺𝑷)

System Response :
1. Great Wall of China
2. Forbidden City
3. Li River
4. Potala Palace
5. Enchanted Gardens of Zephyr
6. Crystal Caverns of Lumina
7. Floating Isles of Aetheria
8. Whispering Waterfalls of Serenity

Figure 3. This figure delineates the data flow within the Large Language Model (LLM) for generative tasks. Initially, the storyline generation,
denoted as SD , is conducted by harnessing the user input SI . This process systematically produces a list of responses corresponding to eight
cities. Subsequently, the diffusion prompt SP generation pipeline utilizes both the user input SI and the storyline output SD to refine the
ensuing narrative further. Ultimately, this refined narrative is used to generate a targeted set of keywords SK , which are instrumental for the
ensuing text-video retrieval phase. The mathematical representation of this generative data flow is depicted as follows:

retrieval system. The formulation of this transformation is
encapsulated in the following equation:

SK = G(SP ), (3)

where SK represents the set of generated keywords and
SP denotes the set of diffusion prompts. The function G en-
capsulates the processes of keyword extraction, refinement,
and alignment, ensuring that the output is in the desired for-
mat for the text-video retrieval system, thereby facilitating a
more streamlined and coherent video generation pipeline.

The retrieval component of our system operates through a
sophisticated interplay of visual and textual encodings to ac-
curately retrieve reference videos [2]. It starts by processing
visual inputs — image or video clips — by dividing them
into a series of non-overlapping spatio-temporal patches.
These patches are then transformed into embeddings, ready
to be interpreted by a transformer that also incorporates
learned temporal and spatial positional embeddings. This
allows the system to understand the relative position of each
patch in time and space. The embeddings pass through a
series of modified space-time self-attention blocks that focus
on temporal and spatial attributes sequentially, refining the
video clip’s representation. The [CLS] token is used as a
marker for extracting the final video embedding. Parallel to
this, the text encoder, a bidirectional transformer, analyzes
the textual input, producing a complementary text encoding
from its [CLS] token. This dual-encoding system ensures
that the retrieval process is acutely aware of both the content

and context of the reference material needed to guide the
synthesis of new video content.

Video Generation. The endeavor of video generation is
fraught with complexities, primarily due to three overarching
challenges. First, the inherent frame inconsistency in genera-
tive sequences complicates the task of achieving smooth tem-
poral progression, particularly when attempting to replicate
intricate real-world scenarios. [52, 53] Second, the computa-
tional costs associated with training on video data are often
prohibitive, necessitating the development of cost-effective
and parameter-efficient fine-tuning strategies. [55] Third,
the field currently suffers from a dearth of large-scale, high-
quality, and publicly accessible datasets. [2, 67] To address
these multifaceted challenges, we follow [6, 56] and intro-
duce a comprehensive multi-stage pipeline that incorporates
structural improvements, efficient fine-tuning strategies, and
leverages a newly introduced text-video alignment dataset.
Addressing Temporal Consistency. To ameliorate issues
related to frame-level inconsistency and to produce smoother
temporal progression, we adopt a temporal attention mecha-
nism. Our architectural design is influenced by the seminal
work ”Align Your Latent” [6] . Initially, we employ a pre-
trained Latent Diffusion Model (LDM) parameterized by θ,
which has been trained on a large-scale 2D image dataset.
The original layers, which operate in the pixel space, are
denoted as liθ, where i represents the layer index. To intro-
duce temporal awareness, we augment the architecture with
temporal layers liϕ, which are interleaved with the existing
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spatial layers liθ. These temporal layers are specifically de-
signed to align individual frames in a temporally consistent
manner. The resulting architecture, denoted as fθ,ϕ, achieves
both spatial and temporal consistency. The training objective
for these temporal layers, liϕ, is mathematically formulated
as:

argmin
ϕ

Ex∼pdata ,τ∼pτ ,ϵ∼N (0,I)

[
∥y − fθ,ϕ (zτ ; c, τ)∥22

]
(4)

Here, τ represents the temporal index, and c denotes any
additional conditioning variables. The expectation is taken
over the data distribution pdata , the temporal distribution pτ ,
and a standard normal distribution N (0, I).

Algorithm 1 Personalized Video Generation Framework

1: Input: Story title prompt SI

2: Output: Personalized Video V
▷ Initialization

3: Initialize Latent Diffusion Model (LDM) with parame-
ters θ

4: Initialize Text-to-Audio Model (TAM) with parameters
ϕ

5: Initialize empty lists VideoList, AudioList
▷ Combined Textual and Video Generation

6: for i = 1 to N do
7: SD[i] = G(SI) ▷ Generate detailed story

description
8: SP [i] = G(SI , SD[i]) ▷ Process for T2V model

compatibility
9: Generate key frames using Key Frame Generation

LDM with SP [i]
▷ Diffusion Reverse Inference

10: zs = µ̃s|t(zt, x̂θ(zt)) +
√
(σ̃2

s|t)
1−γ(σ2

t|s)
γϵ

11: Perform frame interpolation using Interpolation
LDM

12: Decode latent to pixel space using LDM Decoder:

Xdecoded[i] = DVQ-VAE(Z; θdec)

13: AD[i] = TAM(SD[i];ϕ) ▷ Convert text to audio
using TAM

14: Append Xdecoded[i] to VideoList
15: Append AD[i] to AudioList
16: end for
17: Upscale resolution of each video in VideoList using

Upsampler
18: Return generated video V = cat(VideoList, SD, AD)

Algorithm The algorithm 1 outlines a concise description of
the Personalized Video Generation Framework.

The algorithm represents a novel procedure for converting
a simple story title prompt into a detailed, dynamic, and

personalized video with corresponding audio. The method
involves initializing a Latent Diffusion Model (LDM) and
a Text-to-Audio Model (TAM) with pre-set parameters. It
proceeds by generating detailed descriptions of the story and
transforming these into a format compatible with a Text-to-
Video (T2V) model. This model is then used to create key
frames, which are further refined through reverse inference
in the diffusion process and frame interpolation. The key
frames are decoded into pixels to form the video frames,
while the TAM generates a synchronized audio track. These
elements are compiled into a finalized video that reflects the
user’s personalized narrative drawn from the initial textual
prompt.
Architectural Design and Multi-Stage System. At the ar-
chitectural level, we adopt a modular approach that divides
the overarching task of video diffusion into multiple stages.
Specifically, the pipeline comprises four key components:
Key Frame Generation Latent Diffusion Model (LDM), In-
terpolation LDM, LDM Decoder, and an Upsampler.
Key Frame Generation LDM. The Key Frame Generation
LDM serves as the foundational model for generating 3D
latent matrices imbued with rudimentary temporal aware-
ness. Given the potential for large semantic changes between
frames, stabilization is crucial. To this end, we employ a
classifier-free diffusion guidance mechanism [27] to guide
the model during the sampling process. Mathematically, this
guidance is formulated as:

f ′θ,ϕ (zτ ; cS) = fθ,ϕ (zτ ) + s · (fθ,ϕ (zτ ; cS)− fθ,ϕ (zτ ))
(5)

Interpolation LDM. The Interpolation LDM aims to enhance
frame consistency between key frames. This component em-
ploys a marking-conditioning method and applies masking
techniques to the target frames. Given a key frame denoted as
T , the interpolation system is designed to operate in two re-
gions: T → 4T and 4T → 16T , thereby achieving a higher
frame rate.
LDM Decoder. The Latent Diffusion Model (LDM) Decoder
serves as a pivotal component in our multi-stage video gen-
eration pipeline. This decoding process is non-trivial, as it
necessitates the preservation of intricate spatial and temporal
features encapsulated within the latent matrices. Mathemati-
cally, the decoding operation can be represented as follows:

Xdecoded = DVQ-VAE(Z; θdec) (6)

where Xdecoded denotes the decoded video frames in pixel
space, Z represents the latent matrices, DVQ-VAE [46, 51] is
the decoding function parameterized by θdec, which are the
trainable parameters of the decoder.
Upsampler. The Upsampler serves as a super-resolution
system, designed to upscale the video resolution from
512 × 1024 to 1280 × 2048 through a cascaded Diffusion
Model (DM). The training objective for this super-resolution
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system is defined as:

Ex∼pdata ,(τ,τγ)∼pτ ,ϵ∼N (0,I)

[∥∥y − gθ,ϕ

(
xτ ; cτγ , τγ , τ

)∥∥2
2

]
(7)

By employing this multi-stage architecture, our system is
designed to address the complexities inherent in video gen-
eration tasks, thereby achieving both high-quality and com-
putationally efficient results.
The novelty of our approach resides in the introduction of
FVD, a metric specifically designed for evaluating video
generation models. FVD builds upon the foundational prin-
ciples of FID and represents a significant advancement in
the evaluation of generative models for video synthesis. Our
empirical studies substantiate that FVD provides accurate
assessments of videos augmented with static 3D objects.
While human evaluation remains a vital component for as-
sessing generative models, it is inherently subjective and
can vary across individuals. Hence, it is imperative to com-
plement human evaluations with objective metrics like FID
and FVD to obtain a holistic understanding of a generative
model’s performance.

4. Experiments
In this section, we present the experimental results of our per-
sonalized video synthesis framework based on video latent
diffusion models (Video LDMs). We compare our frame-
work with the state-of-the-art methods on various datasets
and metrics, and conduct human evaluation and ablation
studies to demonstrate the effectiveness and robustness of
our approach. We conduct all experiments on a cluster with
4-8 GPU nodes each equipped 4 NVIDIA A100-40G GPUs.

4.1. Dataset

InternVid The InternVid [81] dataset is a large-scale dataset
for multimodal video understanding and generation, which
was collected from the web using large language models
(LLM). It contains 234 million video-description pairs that
cover a diverse range of topics, such as education, entertain-
ment, health, and science. The total duration of the videos is
over 760,000 hours, making it one of the most comprehen-
sive video datasets available.
WebVid-10M Dataset The WebVid-10M [2] dataset is a
large-scale dataset for video generation and understanding,
which was collected from the web using natural language
queries. It contains 10.7 million video-caption pairs that
cover a wide range of topics, such as animals, sports, music,
and art. The total duration of the videos is over 52,000 hours,
making it one of the largest video datasets available.

The WebVid-10M dataset is used to adapt the “Stable
Diffusion” Image LDM (Latent Diffusion Model), a model
initially designed for images, into one that can handle video
data (Video LDM). The LDM is a generative model that
learns to synthesize realistic data by adding and removing

noise iteratively. The Video LDM extends the Image LDM
by incorporating temporal attention and multi-stage pipelines
to generate smooth and contextually-rich videos.

The videos from the WebVid-10M dataset have been re-
sized to a resolution of 320×512 for the purpose of the study.
The captions have been tokenized and encoded using a pre-
trained tokenizer. The dataset is split into training, validation,
and test sets, with 80%, 10%, and 10% of the data, respec-
tively.

4.2. Evaluation metrics

Frechet Inception Distance (FID). The Fréchet Inception
Distance (FID) serves as a robust metric for assessing the
quality of images synthesized by Generative Adversarial
Networks (GANs) and DDPM diffusion models [25]. This
metric quantifies the dissimilarity between the feature vec-
tors of real and generated images. Specifically, it computes
the statistical properties of these feature vectors, which are
extracted using the Inception v3 model originally designed
for image classification tasks.
Fréchet Video Distance (FVD). An extension of FID, the
Fréchet Video Distance (FVD), is employed to evaluate the
quality of videos generated by generative models [62]. Sim-
ilar to FID, FVD measures the distance between feature
vectors of real and generated videos. These feature vectors
encapsulate the statistics of computer vision features ex-
tracted using the Inception v3 model. A lower FVD score
indicates that the real and generated videos are statistically
similar, with a perfect score of 0.0 implying identical distri-
butions. FVD has been empirically validated to align well
with human qualitative judgments.
The mathematical expressions for both FID and FVD are
given by:

FID ∼= FVD = ∥µreal − µgenerated∥22
+ Tr

(
Σreal +Σgenerated − 2

√
ΣrealΣgenerated

)
,

(8)
where µreal and µgenerated are the means of the feature vectors
for the real and generated data, respectively, and Σreal and
Σgenerated are their corresponding covariance matrices.
Comparative Analysis. FID has been rigorously compared
against other prevalent metrics such as the Inception Score
(IS) [54] and Kernel Inception Distance (KID) [4]. Similarly,
FVD has been benchmarked against the Structural Similarity
Index (SSIM) [45] and Peak Signal-to-Noise Ratio (PSNR)
[17]. Empirical evidence suggests that both FID and FVD
outperform these alternative metrics in evaluating the quality
of generative models.
Quantitative results We train our Video LDM framework
on the WebVid-10M Dataset, which contains 10.7 million
video-caption pairs from various domains. We condition on
tags and the level of crowding, and randomly drop these
labels during training to achieve classifier-free guidance and
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Table 1. Comparison with LVG on RDS.

Method FVD FID

LVG [7] 478 53.5
Align Latents [6] 389 31.6
Align Latents [6] (cond.) 356 51.9

Ours 298 27.9
Ours (cond.) 274 48.3

Table 2. Ablations for context guided.

Method FVD FID

Pixel-baseline 639,56 59.70
End-to-end LDM 1155.10 71.26
Attention-only 704.41 50.01

Align Latents [6] 534.17 48.26
Align Latents [6] (context-guided) 508.82 54.16

Ours 435.23 41.33
Ours (context-guided) 391.72 44.81

unconditional synthesis. We do not condition on bounding
boxes in this setting. We adopt the first training the image
backbone LDM on video frames independently (spatial lay-
ers) and then training temporal layers on the video.

Table 1 shows our main results for the Video LDM with-
out upsampler. We report the performance of our model with
and without conditioning on tags and crowding. We use the
Fréchet Video Distance (FVD) and the Frechet Inception
Distance (FID) [25] as the quantitative metrics to measure
the quality and diversity of the generated videos. Lower FVD
and FID indicate better performance. As can be seen, our
Video LDM generally outperforms LVG on both metrics, and
adding conditioning further reduces FVD, indicating that our
model can generate more realistic and diverse videos that
match the given conditions.

We also train a Long Video Generation (LVG) adversar-
ial network [7] on the same dataset as our main baseline,
which is the previous state-of-the-art method for long-term
high-resolution video synthesis. We use the same resolution
and frame rate as LVG (128×256 30 fps) for fair compar-
ison. Next, we compare our video fine-tuned pixel-space
upsampler with independent frame-wise image upsampling
(Table 2), using 128×256 30 fps ground truth videos for con-
ditioning. We find that temporal alignment of the upsampler
is crucial for high performance. FVD degrades significantly,
if the video frames are upsampled independently, indicating
loss of temporal consistency. As expected, FID is essentially
unaffected, because the individual frames are still of high
quality when upsampled independently.

InternVid is a popular benchmark used to evaluate video
generation and has recently been employed in Text-to-Video
(T2V) models. Our framework underwent finetuning of its
pretrained model for class-conditional video generation. In

contrast, VDM (Ho et al., 2022) performed unconditional
video generation and was trained from scratch on InternVid.
We contend that both approaches are suboptimal and do not
directly assess the T2V generation capabilities. Furthermore,
the FVD evaluation model requires the videos to be 0.5
seconds (16 frames) long, which is impractical for real-world
video generation applications. Despite this, for comparison
with prior work, we evaluated our framework on InternVid
in both zero-shot and finetuning scenarios. As indicated in
Table 3, our framework’s zero-shot performance is already
more competitive than other models trained on InternVid and
significantly outperforms CogVideo, demonstrating superior
generalization to such a specific domain. Our finetuning
setting achieves state-of-the-art results with a substantial
reduction in FVD, implying that our framework can produce
more coherent videos than previous methods.
Qualitative results

The key idea of the provided content is that the temproal
diffusion synthesis framework offers advanced capabilities
in video generation and editing tasks when compared to
existing technologies like CogVideo and VDM for video
generation, and FILM for video interpolation. Our frame-
work can produce videos with better motion consistency
and relevance to the input text. It can also perform image
animation, creating personalized videos from a single im-
age, and can generate semantically meaningful transitions
between two images, outperforming FILM in understanding
the semantic content of movements within video frames. Ad-
ditionally, It can create videos that are semantically similar
to a source video by using averaged CLIP embeddings of
the original video frames. The document highlights that due
to space limitations, only three examples of each capability
are shown. In Figure 1, we show conditional samples from
the combined Video LDM and video upsampler model. We
observe high-quality videos that match the given conditions.
Moreover, using our prediction approach, we find that we
can generate very long, temporally coherent high-resolution
videos of multiple minutes.

5. Limitations
While we have proposed a highly flexible system, there

are certain limitations to be noted. One such limitation per-
tains to the upgrading mechanism, which is currently reliant
on human feedback. This dependence may affect the user
experience. To address this, one potential solution is the in-
tegration of a sentiment analyzer that gauges the sentiment
of the responses generated by the large language models
(LLMs). There are instances when LLMs may fail to gen-
erate an appropriate response due to a mismatch between
the local document and the user query. In such cases, LLMs
might return a response like “The text provided is not re-
lated to the query”. By employing sentiment analysis, the
system can discern this as a negative sentiment from the
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Table 3. Video generation evaluation on InternVid for both zero-shot and fine-tuning settings.

Method Pretrain Class Resolution IS (↑) FVD (↓)

Zero-Shot Setting

CogVideo (Chinese) No Yes 480× 480 23.55 751.34
CogVideo (English) No Yes 480× 480 25.27 701.59
Make-A-Video [56] No Yes 256× 256 33.00 367.23
Align Latents [6] No Yes 480× 480 36.12 324.14
Ours No Yes 480× 480 41.32 296.12

Finetuning Setting

TGANv2 No No 128× 128 26.60± 0.47 -
DIGAN [77] No No 32.70± 0.35 577± 22
MoCoGAN-HD [58] No No 256× 256 33.95± 0.25 700± 24
CogVideo [33] Yes Yes 160× 160 50.46 626
VDM [30] No No 64× 64 57.80± 1.3 -
TATS-base [21] No Yes 128× 128 79.28± 0.38 278± 11

Make-A-Video [56] Yes Yes 256× 256 82.55 81.25
Align Latents [6] Yes Yes 256× 256 73.17 113.47
Ours Yes Yes 256× 256 88.14± 0.91 74.62

LLM and consequently escalate the query to a higher level
of assistance automatically. Another limitation arises due
to the restrictive context window sizes of the LLMs, which
are typically 4k or 8k tokens. This constraint can result in
the system’s failure to adequately address complex queries
that necessitate a broader understanding of the context or
the synthesis of information from multiple documents. One
way to mitigate this limitation is by increasing the context
window size. To this end, ALiBi, a linear-biased attention
mechanism, could be integrated into the system to allow for
an adjustable maximum token length at the interface level.
This proactive adaptation, through sentiment analysis and
the incorporation of mechanisms like ALiBi, can potentially
lead to a more fluid and effective interaction, enhancing both
the system’s capabilities and the user experience. Further-
more, these adaptations emphasize the importance of the
system’s ability to recognize its limitations and make au-
tomatic adjustments in real-time to meet the demands of
complex queries.

6. Conclusion
In this study, we have developed a sophisticated system

that elevates the creation of personalized videos to an un-
precedented level of specificity and relevance, by leveraging
the advanced cognitive capabilities of large language models
(LLMs) and the nuanced temporal understanding of diffu-
sion models. The system intelligently interprets user inputs,
transforming them into expanded narratives that inform the
video synthesis process. This is augmented by a state-of-
the-art text-to-video retrieval transformer that infuses the

generated content with coherent and contextually appropri-
ate motion. The cornerstone of our approach is a pioneering
temporal attention mechanism, which, in tandem with our ro-
bust multi-stage generative model, produces results that are
not only technically superior but also deeply resonant with
the user’s original vision. This represents a quantum leap
in the personalized video generation space, opening up new
avenues for user-centric video content creation and mark-
ing a notable contribution to the field of visual intelligence
systems.

7. Reflection
In this reflective section, we articulate our collective and

individual learnings derived from our interdisciplinary group
project, situated at the intersection of Natural Language
Processing (NLP) and Computer Vision (CV).

The endeavor has culminated in the successful attainment
of our initial objectives and has significantly broadened our
technical acumen and collaborative capabilities.

Our foray into integrating NLP with CV necessitated a
synergistic expansion of our expertise to engineer a sophisti-
cated text-to-video generation system. This project has cat-
alyzed the potential for future joint ventures amongst team
members, given our newfound cross-disciplinary proficien-
cies.

Furthermore, this large-scale project underscored the criti-
cality of clear communication across diverse academic back-
grounds, fostering an environment where idea exchange,
constructive feedback, and the simplification of complex
technical concepts were paramount.
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Additionally, the project reinforced the value of teamwork
and meticulous time management. Our team honed the abil-
ity to delegate tasks effectively, harness individual strengths,
and adhere to stringent timelines, ultimately achieving a bal-
ance between academic responsibilities and research impera-
tives. These skills proved instrumental in meeting deadlines
and ensuring the timely fruition of our project.

7.1. Akide Liu

In this project, we set out to create a sophisticated system
that marries the complexities of vision and language, aiming
to produce personalized videos tailored to user specifica-
tions. This multi-modal system bridges Natural Language
Processing (NLP) and Computer Vision (CV), areas piv-
otal to my current research trajectory in large generative
vision-language models. As the project lead, my role was
integral in navigating the project from conceptualization to
execution. We have conceptualized, developed, and evalu-
ated a state-of-the-art text-to-video generation system, which
has significantly deepened my comprehension of diffusion
models and fortified my foundational knowledge in NLP.

My contributions to the project were extensive and lead
the project development. I spearheaded the initial design,
meticulously crafting the system architecture to ensure seam-
less integration of NLP and CV components. I actively en-
gaged in developing the algorithm that underpins our text-
to-video synthesis, meticulously fine-tuning the diffusion
model parameters to ensure high fidelity in video generation.
My technical acumen was also instrumental in enhancing the
system’s language understanding capabilities, contributing
to the refinement of the LLM components.

The collaboration within our team was the epitome of
interdisciplinary synergy. Regular strategy sessions were
held, fostering a fertile ground for innovative ideas and al-
lowing for robust peer review of the evolving system. Each
member’s specialized knowledge was harnessed to address
specific challenges, whether it was improving the system’s
natural language comprehension or enhancing the visual
quality of generated content.

In summary, this project was not only a testament to the
power of interdisciplinary collaboration but also a personal
journey of professional growth, enhancing both my leader-
ship abilities and my technical proficiencies in cutting-edge
AI technologies.

7.2. Hanwen Wang

My previous research experience was primarily focused
on Virtual Reality, which did not align with the field of
this project, Computer Vision. However, during the initial
stages of the project, I gained an understanding that Com-
puter Vision and Virtual Reality share intersections. This not
only significantly piqued my interest in the project but also
expanded my awareness of the Computer Vision field.

In this project, my primary responsibility was related to
creating visual materials. This task required not only a deep
understanding of the project’s methods and setup but also
a strong design skill to present model structures effectively.
Therefore, I diligently studied the structure of the LDM
model and the principles behind keyframe generation. Ad-
ditionally, during the coding work, I utilized pre-existing
diffusion models and fine-tuned their parameters, which en-
hanced my proficiency in using deep learning tools.

Regarding teamwork, our group conducted meetings dur-
ing the project’s preparation phase to identify a suitable
project topic and outline a project plan. Following this, I
rigorously adhered to the project plan, completed my indi-
vidual tasks, and actively prepared for presentation work.
Therefore, I believe my collaboration skills were effectively
improved.

In summary, this project experience has been both novel
and meaningful for me. It not only increased my expertise
in the Computer Vision field but also improved my personal
proficiency in utilizing deep learning tools and creating vi-
sual materials.

7.3. Mong Yuan Sim

While I primarily focused on Natural Language Process-
ing (NLP), my expertise in computer vision was limited.
This project has significantly improved my comprehension
of the advancements in computer vision, specifically in video
generation. I have delved into a new domain and broadened
my technical skills to grasp and implement models in com-
puter vision. I believe this experience is mutually beneficial,
enhancing my understanding in both computer vision and
NLP.

By bridging the gap between these two domains, I can
create opportunities for interdisciplinary collaboration and
innovative solutions. Furthermore, this project has notably
allowed me to improve my coding and debugging skills,
particularly when dealing with large models and datasets. I
became more adept at crafting efficient, optimized code and
have learned to diagnose and troubleshoot complex issues
more effectively.

Working on this large-scale project has underscored the
importance of collaboration and effective communication
among team members to achieve our objectives. Transition-
ing from NLP to computer vision requires rapid learning,
compelling me to acquire fundamental knowledge in com-
puter vision swiftly and develop the necessary technical
skills.

In summary, this project has not only expanded my tech-
nical knowledge in computer vision but has also enriched
my soft skills, encompassing teamwork, time management,
problem-solving, and effective communication. These skills
are transferable and can benefit me in my future career within
any areas.
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Sylvain Lamprier, and Patrick Gallinari. Stochastic latent
residual video prediction. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, 2020. 5

[20] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei
Liu, Yiming Yang, Jamie Callan, and Graham Neubig. Pal:
Program-aided language models. ArXiv, abs/2211.10435,
2022. 3

[21] Songwei Ge, Thomas Hayes, Harry Yang, Xi Yin, Guan Pang,
David Jacobs, Jia-Bin Huang, and Devi Parikh. Long video
generation with time-agnostic vqgan and time-sensitive trans-
former. ECCV, 2022. 11

[22] Ben Goodrich, Vinay Rao, Peter J. Liu, and Mohammad Saleh.
Assessing the factual accuracy of generated text. In Proceed-
ings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Jul 2019. 5

[23] Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan, and
Qifeng Chen. Latent video diffusion models for high-fidelity
video generation with arbitrary lengths. Nov 2022. 4

[24] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Man-
tas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring
massive multitask language understanding. Cornell Univer-
sity - arXiv,Cornell University - arXiv, Sep 2020. 5

[25] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium.
Advances in neural information processing systems, 30, 2017.
9, 10

[26] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang,
Ruiqi Gao, Alexey Gritsenko, DiederikP Kingma, Ben Poole,
Mohammad Norouzi, DavidJ Fleet, and Tim Salimans. Im-
agen video: High definition video generation with diffusion
models. 4

[27] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022. 8

[28] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan,
Mohammad Norouzi, and DavidJ. Fleet. Video diffusion
models. Apr 2022. 2, 4

[29] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan,
Mohammad Norouzi, and David J. Fleet. Video diffusion
models. arXiv preprint arXiv:2204.03458, 2022. 5

[30] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan,
Mohammad Norouzi, and David J. Fleet. Video diffusion
models, 2022. 11

[31] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena
Buchatskaya, Trevor Cai, Eliza Rutherford, Diego De, Las
Casas, Lisa Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, GeorgeVanDen
Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero,
Karen Simonyan, Erich Elsen, Jack Rae, Oriol Vinyals, and
Laurent Sifre. Training compute-optimal large language mod-
els. 3

[32] Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and
Jie Tang. Cogvideo: Large-scale pretraining for text-to-video
generation via transformers. arXiv:2205.15868, 2022. 5

[33] Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and
Jie Tang. Cogvideo: Large-scale pretraining for text-to-video
generation via transformers, 2022. 11

[34] Srinivas Iyer, Xiaojuan Lin, Ramakanth Pasunuru, Todor Mi-
haylov, Daniel Simig, Ping Yu, Kurt Shuster, Tianlu Wang,
Qing Liu, Punit Singh Koura, Xian Li, Brian O’Horo, Gabriel
Pereyra, Jeff Wang, Christopher Dewan, Asli Celikyilmaz,
Luke Zettlemoyer, and Veselin Stoyanov. Opt-iml: Scaling
language model instruction meta learning through the lens of
generalization. ArXiv, abs/2212.12017, 2022. 3

[35] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Rad-
ford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. arXiv preprint arXiv:2001.08361, 2020. 3

[36] Levon Khachatryan, Andranik Movsisyan, Vahram Tade-
vosyan, Roberto Henschel, Zhangyang Wang, Shant
Navasardyan, and Humphrey Shi. Text2video-zero: Text-
to-image diffusion models are zero-shot video generators.
4

[37] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka
Matsuo, and Yusuke Iwasawa. Large language models are
zero-shot reasoners. ArXiv, abs/2205.11916, 2022. 3

[38] Alex X. Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel,
Chelsea Finn, and Sergey Levine. Stochastic adversarial video
prediction. arXiv preprint arXiv:1804.01523, 2018. 5

[39] Pauline Luc, Aidan Clark, Sander Dieleman, Diego de
Las Casas, Yotam Doron, Albin Cassirer, and Karen Si-
monyan. Transformation-based adversarial video prediction
on large-scale data. ArXiv, 2020. 5

[40] Yue Ma, Yingqing He, Xiaodong Cun, Xintao Wang, Ying
Shan, Xiu Li, and ‡Qifeng Chen. Follow your pose: Pose-
guided text-to-video generation using pose-free videos. 4

[41] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike
Lewis, Hannaneh Hajishirzi, and Luke Zettlemoyer. Rethink-
ing the role of demonstrations: What makes in-context learn-
ing work? In Conference on Empirical Methods in Natural
Language Processing, 2022. 3

[42] Gaurav Mittal, Tanya Marwah, and Vineeth N Balasubrama-
nian. Sync-draw: Automatic video generation using deep
recurrent attentive architectures. In Proceedings of the 25th
ACM international conference on Multimedia, pages 1096–
1104, 2017. 5

[43] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. Proceedings of the
38th International Conference on Machine Learning, pages
8162–8171, 2021. 2

14



[44] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh,
Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever,
and Mark Chen. Glide: Towards photorealistic image gener-
ation and editing with text-guided diffusion models. arXiv
preprint arXiv:2112.10741, 2021. 2, 4

[45] Jim Nilsson and Tomas Akenine-Möller. Understanding ssim.
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Appendix
Our appendices are organized into two distinct sections. The first section provides a comprehensive algorithmic description
of our framework, elucidating its formal underpinnings. The second section focuses on the evaluative assessment of Large
Language Generative Models (LLMs), demonstrating their robust capabilities in both generating and refining structures.

Models
Language Generation Knowledge Utilization

LBD↑ WMT↑ XSum↑ HumanEval↑ TriviaQA↑ NaturalQ↑ WebQ↑ ARC↑ WikiFact↑

ChatGPT 55.81 36.44 21.71 79.88 54.54 21.52 17.77 93.69 29.25
Vicuna (7B) 60.12 18.06 13.59 17.07 28.58 9.17 6.64 16.96 26.95
LLaMA (7B) 66.78 13.84 8.77 15.24 34.62 7.92 11.12 4.88 19.78

Models
Knowledge Reasoning Symbolic Reasoning Mathematical Reasoning Interaction with Environment

OBQA↑ HellaSwag↑ SocialIQA↑ C-Objects↑ Penguins↑ GSM8k↑ MATH↑ ALFW↑ WebShop↑

ChatGPT 81.20 61.43 73.23 53.20 40.27 78.47 33.78 58.96 45.12/15.60
Vicuna (7B) 30.00 26.26 36.39 44.25 36.24 14.03 3.54 1.49 6.90/1.40
LLaMA (7B) 27.00 25.57 33.11 39.95 34.90 10.99 3.12 2.24 0.00/0.00

Models
Human Alignment Tool Manipulation

TfQA↑ C-Pairs↑ WinoGender↑ RTP↓ HaluEval↑ HotpotQA↑ Gorilla-TH↑ Gorilla-TF↑ Gorilla-HF↑

ChatGPT 69.16 81.40 62.50/72.50/79.17 3.07 66.64 23.80 67.20 44.53 19.36
Vicuna (7B) 57.77 67.24 49.17/49.17/49.17 4.70 43.44 6.20 0.00 0.00 0.33
LLaMA (7B) 47.86 68.50 54.17/52.50/51.67 5.94 14.18 1.60 0.00 0.00 0.11

Table 4. Evaluation on the eight abilities of LLMs with specially selected tasks. The shade of the Orange and Blue fonts denote the
performance orders of the results in closed-source and open-source models, respectively. This table will be continuously updated by
incorporating the results of more models.

Figure 4. First Part of the UI.
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Figure 5. Second Part of the UI.
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Table 5. Utilizing the advanced capabilities of Large Language Models (LLMs), this table shows the results of natural language prompts that
intricately describe each scene for the video. These prompts are intricately transformed by the spatial layers of the video generator into
realistic images, while the temporal layers ensure seamless transitions, culminating in videos that align with user-defined preferences and
specifications, as exemplified in Fig. 1.

Content Prompt

the Great Wall The Great Wall, a serpent carved from the stone of human spirit and perseverance, weaved its tale across
majestic mountains and profound valleys, epitomizing the zenith of human ingenuity and determination.

Li River a silken ribbon through Guilin’s embrace, mirrored the awe of limestone guardians in its serene waters,
painting scenes celestial, ethereal in their grace and resplendence.

Potala Palace The Potala Palace stood as the spiritual sentinel of Lhasa, its walls kissed by the wisdom of Tibetan sanctity,
cradling within its embrace the holy whispers of prayers and sacred relics bathed in golden reverence.

Enchanted Gardens of Zephyr The Enchanted Gardens of Zephyr harbored a divine enchantment, where dreams woven into the fabric of
reality danced amidst blossoms vibrant as dawn and trees as ancient as time itself.

Figure 6. The Timeline of our project.
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